1. Let I = [0, 1]. Let $g : I \to \mathbb{R}$ be given by

$$g(x) = \begin{cases} \frac{1}{q} & \text{if } x \in \mathbb{Q} \text{ and } x = \frac{p}{q}, \text{ g.c.d.}(p,q) = 1\\ 0 & \text{otherwise} \end{cases}$$

Show that g is Riemann Integrable.

2. Let $v \in \mathbb{R}^2$ and $g : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$g(x) = \begin{cases} \frac{x_1 x_2^4}{x_1^4 + x_2^6} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

(a) Find the directional derivative in the direction v of g at 0.

(b) Is g differentiable at 0 ?

3. Decide whether each of the following statements are true or false providing adequate justification.

(a) Let a < b be two real numbers and $f : [a, b] \to \mathbb{R}$ is a bounded function. If f^2 is Riemann integrable then f is Reimann integrable.

(b) Let (X, d) be a metric space and $E \subset X$. If \overline{E} is connected then E is connected.

4. Let \mathbb{R}^2 be equipped with the following metric d where d(x, y) is the number of coordinates where x and y differ. For example:

$$d\left(\left[\begin{array}{c}-1\\0\end{array}\right],\left[\begin{array}{c}-1\\300\end{array}\right]\right)=1$$

(a) Show that (\mathbb{R}^2, d) is a metric space.

(b) Describe the open balls of radius ϵ around the origin in (\mathbb{R}^2, d) for all $\epsilon > 0$

(c) Show that every subset of \mathbb{R}^2 is open w.r.t d and describe which functions $f : (\mathbb{R}^2, d) \to (\mathbb{R}^2, d)$ are continuous.

5. The base of a rectangular box costs three times as much per square foot as do the sides and top. Find the relative domensions for the most economical box of given volume.